CALCULATION OF THE COEFFICIENT OF
VISCOSITY OF MODERATELY COMPRESSED GASES

V. R. Kamenetskii . UDC 532.133

A method is set forth for calculating the coefficients of viscosity of gases of moderate den-
gity on the basis of allowance for dimerization and the use of an effective potential function
of the intermolecular interaction, The example of water vapor and ammonia show that the
method is fairly reliable.

The formalism of rigorous kinetic theory, taking into account binary collisions of molecules, enables
one to calculate the transport coefficients of only rarefied gases.

For dense systems, one must take into account the contribution from collisions of higher order, and
at the present time this presents greater difficulties. However, for a gas of moderate density this problem
can be solved by using the notations of a molecular association.

The coefficient of viscosity of a gas is expressed as an expansion in powers of the pressure:
n="ny(1+ap+..), 1)

the coefficients being functions of the temperature and they take into account the contributions of triple and
higher order collisions.

In the region of moderate densities, it is sufficient to consider only the linear part of Eq. (1), in
which a = 7-1(7/6 plp=o is the coefficient that takes into account the contribution of triple collisions.

If one regards a gas of moderate density as an equilibrium mixture of monomers and dimers, then,
as Stogryn and Hirschfelder have shown [1], a triple collision can be represented as a binary collision be-
tween a monomer and a dimer.

In accordance with the conclusions of [1], the coefficient of viscosity of such a gas can be represented
by the sum

1 = 1Ny + Moo @

where %y, is the coefficient of viscosity of the binary mixture of momomers and dimers, and ¢ is the con-
tribution due to transport by collisions.

If we substitute into (2) the corresponding expressions
for nm and 5e¢, we can obtain an expression for the coefficient

TABLE 1. Coefficients of Eq. (7) a in dimensionless form, this being valid for the Lennard-

% Jones potential [1]:
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TABLE 2. Potential Parameters of COy, NHj3, and H,0O

Gas t, °C o T e/k, °K o A
co 20 1,054 1,166 251,4 3,756
2 30 1017 1224 2477 3,773
NH 20 2,057 0,450 651 4 2,818
3 30 1,958 0,476 636.9 2,827
150 2,247 0,425 996, 1 2,604
H,0 300 17486 0,690 8304 27660
400 11226 0,947 7105 2722

The indices 11 and 12 refer to the interaction between two monomers, and a monomer and a dimer,
respectively.

The method can be applied to simple gases with spherically symmetric intermolecular interaction.

Singh and hig collaborators [4-6] applied Eq. (3) to complicated gases for which the interaction
energy between the molecules is determined by not only the distance but also the mutual orientation.

TFor polar substances they used the Stockmayer potential (12-6-3), and for substances whose mole-
cules have a quadrupole moment they used the potential (12-6-5) introduced by Smith, Munn, and Mason
[11]. In addition, the authors of [4-6] assumed that the molecules that make up a dimer are in a position
that corresponds to maximal energy of attraction, and also that there is an equal probability of all relative
orientations of interacting molecules.

Although the results of these papers agree qualitatively with the experimental data (for example,
they reproduce the anomalous pressure dependence of the coefficient of viscosity of water vapor and am-
monia), the quantitative agreement between the calculated values of @ and the experimental values is in-
adequate. This is apparently due to the insufficiently plausible assumption and the potential functions used.

Danon and Amdur [7], solving this problem only for polar gases, used a previously averaged Stock-
" mayer potential (12-6-3), reduced to the form (12-6) with temperature dependent parameters and reduced
dipole moment. The values they calculated of a for NH; and H,O agree better with the experimental data,
although the discrepancies still remain significant.

In the present paper we attempt to apply the approach developed in [1] to gases of any molecular struc-
ture, using an effective potential function of intermolecular interaction.

It has been previously shown in [2] that as effective pofential one can use a two-parameter potential
of the type (12-6) with temperature-dependent parameters ¢(T) and £(T). The temperature dependence of
the parameters of such a potential appears as a result of averaging of the interaction energy over all possi-
ble mutual orientations of the interacting molecules.

The intermolecular interaction of any gas can be assumed to be spherically symmetric, which greatly
facilitates the calculation of the thermal properties of substances to a sufficient -accuracy.

Since the effective potential function must describe equally successfully both the equilibrium and the
nonequilibrium properties, we used the following method of determining the potential parameters o(T) and
£(T) from the data on the second virial coefficient and the coefficient of viscosity of a rarefied gas, From
the expressions -

B = 2/3nNo*B*, 4)
1 MT (5)

'r]o == 26693 ——029(2,2)*

it is not difficult to obtain the dependence
nOBZ/S—— _ B*2/3 _ w* (T*) (6)
311.64 VMT ~ Qe2%*

The actual form of (6) is determined by means of the values of B* and © (%:2* tabulated in [3].

Having data on 1y and B at our disposal, we can use Eq. (6) to calculate *,and, by a specially con-
structed graph of T* as a function of ¢*, find the value of the reduced temperature. After this we find
the parameter g/k = T/T*.

The corresponding value of the parameter ¢ is found from (4) or (5).
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TABLE 3. Comparison of Calculated and Experimental Values of .
RTa/b, for Ammonia and Water Vapor )
Calculated values E:_cperirnental values

t,°c : of this .
5] 163 m [fam o B | @ {10]
paper
g 2|38 | -8 | 3,00 | —s0 —3,73
s 30 | —3.64 | —1.76 | —2.89 | —3.65 —2062
170 | —6,44 —4,41 | —3,88 | —1,60
200 | —6.18 | Zal8l | —3l8 | 263
230 | —5.85 —3%7 | 2081 | —o'83
| T eae | TEO N TN L
HO 176 4,96 —3.73 —4,07
195 478 | 336 —3.38
214 —4760 —3006 —2l44
148 539 —4)36 —4)56
192 —479 —3l42 3724
934 —4)26 —2.76 —o0l82
975 —3)75 —2)%5 —0'82

Instead of plotting T* against y*, one could use the analytic expression obtained in this paper:
n
T E ap*, @)
i=0

Equation (7) has two sets of coefficients corresponding to the two ranges of variation of the reduced tem-
perature: T* = 0.3-3.416 and T* = 3.416-10.0 {the value T* = 3.416 corresponds to the reduced Boyle tem-
perature for the Lennard-Jones potential, for which y* = 0). The values of these coefficients are given in
Table 1.

The values of the potential parameters of carbon dioxide, ammonia, and water vapor determined in
this way exhibit a clearly expressed temperature dependence, as can be seen from Table 2,

Using the parameters we have obtained, we calculated the values of RTe/b, for superheated water
vapor and ammonia. The values of B} were obtained from the table in [1] and the values of 2 (:1)*, B*,
and dB*/dT* from [3].

The parameters of the monomer—dimer interaction were calculated by means of the relations ob-
tained in (1) for the potential (12-6)

eyfey = 1.32; gyp/0oy = 1.16. (8

The results of the calculations are given in Table 3 and they reveal a fairly good agreement between
the calculated and experimental values of RTa/b,. For comparison we also give in Table 3 the results of
[5-7], which were obtained in a more complicated manner. They agree less well with the experimental
data,

Analysis of the results of this paper indicates a sufficient reliability of the method, which enables
one to determine fairly accurately the influence of pressure on the coefficient of viscosity of gases of com~
plicated molecular structure.

NOTATION
7 is the coefficient of viscosity of a compressed gas;
7 is the coefficient of viscosity of a rarefied gas;
B is the second virial coefficient;
Bp, B are the contributions of bound and metastably bound dimers to the second virial coeffi-

cient, respectively;
B4 =Bp +Bm is the total contribution of dimers to the second virial coefficient;
D is the coefficient of diffusion;
at)* (2%  are the reduced collision integrals used to calculate the coefficients of diffusion and
viscosity, respectively;
are the parameters of the potential of the intermolecular interaction;
is the gas constant;
is Avogadro's number.
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